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Abstract

A stochastic optimization approach to stereo matching ie presented.
Unlike conventional correlation matching and feature matching, the ap-
proach provides a dense array of disparities, eliminating the need for inter-
polation. Firat, the stereo matching problem is defined in terms of finding
a disparity map that satisfies two competing constraints: (1) matched
points should have similar image intensity, and (2) the disparity map
should be smooth. These constraints are expressed in an “energy” func-
tion that can be evalnated locally. A simulated annealing algorithm is
used to find a disparity map that has very low energy (i.e., in which both
constraints have simultaneously been approximately satisfied). Annealing
allows the large-scale gtructure of the disparity map to emerge at higher
temperatures, and avoids the problem of converging too quickly on a lo-
cal minimum. Results are shown for a sparse random-dot stereogram, a
vertical aerial stereogram {shown in comparison to ground truth), and an
obligue ground-level scene with occlusion boundaries.

1 Introduction

To solve the stereo matching problem, one must assign correspondences between
points on two lattices {the left and right images), such that corresponding points
are the projections of the same point in the scene. The problem can be viewed
as a complex optimization in which two criteria must be satisfied simultane-
ously. First, the corresponding points should have similar local features (in
particular, similar intensity). Secondly, the spatial distribution of disparities,
or, equivalently, the spatial distribution of depth estimates, should be plausible
with respect to the depths likely to be observed in real scenes. Several au-
thors have noted that, because surfaces are spatially coherent, the result of the
stereo process should also be coherent, except at the relatively rare occlusion
boundaries (for example, see Julesz [1] and Marr and Poggio [2]). The first
criterion — similarity of local features — is insufficient because stereo corre-
spondences are locally ambiguous. The second criterion, which is sometimes
called the smoothness constraint, provides a heuristic for deciding which of the
many combinations of feature-preserving correspondences are best.

The two major conventional approaches to sterec matching — feature match-
ing and area correlation — suffer from two serious problems:

» Areas of nearly homogeneous image intensity are difficult tc match be-
cause they lack local spatial structure. Edge-matching approaches never
even atternpt to match in such areas because no edges are found, and
area correlation approaches fail because no significant peaks appear in the
correlation surface. For most stereo vision applications, however, a dense
matching is required. Dense estirnates of depth are also more consistent
with tlie subjective quality of hurnan sterec experience, as revealed, for ex-
ample, in random-dot stereograms. To obtain dense depth maps with the



conventional approaches, one must resort to a postmatching interpolation
step.

e Even where local structure is abundant, stereo correspondences may be
ambiguous. Small-scale periodic structures are particularly difficult to
match. To resolve these ambiguities, stereo matchers usually rely on a
propagation of information, either from nearby areas, or from matching
at larger scales, or both.

This paper describes an approach to stereo matching that is quite different
from conventional area-based and feature-based matching. It is essentially an
undirected Monte Carlo search that sirnulates the physical process of annealing,
in which a physical system composed of a large number of coupled elements is
reduced to its lowest energy configuration (or ground state) by slowly reducing
the temperature while maintaining the system in thermal equilibrium. The
system is composed of the lattice sites of the left image, and the state of each
site encodes a disparity assignment. The total energy of the system is the sum
of the energies of the local lattice sites. The local energy, which is a function
of the states of the lattice site and its neighbors, has two terms: one term is
proportional to the absolute intensity difference between the matching points,
and the other term is proportional to the local variation of disparity (that is, to
the lack of smoothness). The effect of a heat bath is simulated by considering
local random state changes and accepting or rejecting them depending on the
change in energy and the current temperature.

2 Simulated Annealing

Simulated annealing is a stochastic optimization technique that was inspired
by concepts from statistical mechanics [3], [4]. It has been applied to a wide
variety of complex problems that involve many degrees of freedom and do not
have convex solution spaces. See Carnevali |5] for examples of image-processing
applications. At the heart of simulated annealing is the Metropolis algorithm
[6], which samples states of a system in thermal equilibrium. When a system is
in thermal equilibrium, its states have a2 Boltzman distribution:

P(E) = exp(~E/T) (1)

where E is energy, P[E) is the probability of a state having energy E, and T
is the temperature of the system.! The Metropolis algorithm takes the system
to equilibrium by considering random, local state transitions on the basis of
the change in energy that they imply: if the change is negative, the transition
is accepted; whereas, if the change is positive, the transition is accepted with
probability exp{(—AE/T).

!The Boltzman distribution is usually written as exp{—kE T}, where k is Boltzman’s con-
stant, Because we define energy and temperature as pure numbers, no constant is necessary.




Select a random state S.
Select a sufficiently high starting temperature T.
while T' > 0 do
Make a random state change §’ «— R(S5).
AE — E(S') — E(S)
; Accept lower energy states.
if AE <0 then § ~— &'
; Accept higher-energy states with probability P,
else
P — exp(—AE/T)
z + random number in [0, 1]
ifz < P then § — §'
if there hag been no significant decrease in E
for many iterations
then lower the temperature T,

Figure 1: The Simulated Annealing Algorithm

Starting at a very high temperature, simulated annealing uses the Metropolis
algorithm to bring the system to equilibrium. Then the temperature is lowered
slightly and the procedure is repeated until a very low temperature is achieved.
If the temperature is lowered too quickly, the system may get stuck in locally
optimal configurations and the ground state may not be reached. The algorithm
is shown in Figure 1.

Simulated annealing tends to exhibit good average-case performance. It has
the advantage of being a very simple algorithm that is inherently massively par-
allel. Furthermore, the parallelism is easily implemented because the processors
need only short interconnections, may run asynchronously, and can even be
unreliable. To be a good candidate for simulated annealing, a problem should
follow the analogy of physical annealing. The function to be optimized should
be expressed as an analog to the energy of a system composed of many local
elements, and the interaction between the local elements should be short-range.
A small random change in the state of the system should be possible by switch-
ing the microstate of a local element, and the resulting change in energy should
be quickly computed by evaluating only the effects of the element’s neighbors.

3 Stochastic Stereo Matching

If the relative positions and orientations of the two cameras are known, as well
as the internal camera parameters, we can use the epipolar constraint to restrict



the correspondences to the epipolar lines [7]. With no loss of generality, we
can assume that the epipolar lines are parallel to the horizontal lines of lattice
sites.?2 The correspondence problem then reduces to the assignment of a single
horizontal disparity to each pixel in, say, the left image lattice.

Suppose that we have left and right image lattices, Ly and Ry, with k =
{1,7},0 £ 1,7 £ n— 1, that constitute a stereo pair with horizontal epipo-
lar lines. The intensity of the left lattice point Ly is Ir(k) = IL(7,7), and
similarly for right lattice points. For every k there is a (horizontal) dispar-
ity D(k) such that the lattice point Ly = L;; in the left image matches the
point Ry = Ry j1p(k) in the right image. The problem is to find an assign-
ment of disparities to lattice points that satisfies the two criteria discussed in
Section 1: similar intensity and smoothness. We assume that the upper and
lower limits of disparity, Dmin and Dmge, are known. Furthermore, we con-
sider only integer values of disparity. Even with these restrictions, the system
has N = (Dmaz — Dmin + 1)™ possible states. Typical values in our examples
are Dpgx =9, Dmin =0, and n = 128, in which case ¥ = 1015384, Exhaustive
search is obviously out of the question.

The disparity map should satisfy two criteria that are, to some extent, in-
compatible. The first criterion, which we call the photomeiric constraint, dic-
tates that the disparity assignments should map points in L to points in R with
comparable intensity: Ip(k) ~ Igr(k'). The second criterion is the smoothness
constraint, which limits the variation in the disparity map.

Both criteria cannot be perfectly satisfied except in trivial situations. The
photometric constraint can only be approximately satisfied due to sensor noise,
quantization, slight lighting differences, and the presence of areas in one image
that are occluded in the other. As discussed above, areas of homogeneous
intensity will lead to ambiguous disparities based on photometry alone. The
smoothness constraint will be perfectly satisified only with a uniform disparity
map.

In an attempt to satisfy the two criteria simultaneously, we minimize a func-
tion of the form:

B =3 |ILlk) - Ir(i,7 + D)) + AIVD(R)]| (2)
k

The first term inside the sum represents the photometric constraint and the
gecond term the smoothness constraint. The constant A determines their relative
importance. We implement the ||V.D(k}| operator as the sum of the absolute
differences between disparity D{k) and the disparities of the kth lattice point’s
eight neighbors. Equation {2} is similar to the nonquadratic Tikhonov stabilizer
proposed for stereo by Poggio, et. al. [8].

Following the simulated annealing algorithm, the system begins in a state
chosen at random. Individual lattice points are considered in scan-line order,

2If the epipolar lines are not horizontal, the images can be mapped into a rectified stereo
pair.



new disparities are selected at random, and the changes in energy are computed
from equation (2). Instead of monitoring the energy distribution to test for
thermal equilibrium, we use a fixed annealing schedule.

4 Results

‘We have tested the stochastic matching algorithm on a variety of images, includ-
ing random-dot sterecgrams, vertical aerial sterecgrams, and oblique ground-
level stereograms. Identical parameters were used for all the examples shown in
this section. In particular, the intensity ranged between 0 and 255, and we used
A =5. We used a fixed annealing schedule: the temperature begins at T = 100
and is repeatedly reduced by 10% until it falls below T' = 1. A total of ten scans
through the lattice are performed for each temperature in this sequence.

Figure 2 shows a four-level “wedding cake” random-dot stereogram com-
posed of 10% white and 90% black pixels. The background has zero disparity,
and each successive layer has an additional two pixels of disparity. The figure
shows the results with disparities encoded as grey values. Pixels with higher
disparity are “closer” and are displayed as brighter values. Intermediate results
for T = 47 and T = 25 and the final result for T = 0 are shown,

Figures 2c-e illustrate an important advantage in stochastic matching: the
large-scale structure of the scene begins to emerge at higher temperatures, and
as the temperature decreases finer structures become apparent. Temperature
therefore provides a mechanism for dealing with problems of scale that is simpler
than the complex search strategies employed by conventional methods. Note
that the final disparity map is dense and that it corresponds very well to the
three-dimensional wedding-cake shape. The errors are confined to the occlusion
boundaries.

The next example, shown in Figure 3, is a vertical aeria] stereogram supplied
by the Engineering Topographic Laboratory (ETL). The original images have
been bandpassed to remove the DC component. Again, intermediate results for
T = 47 and T = 25 and the final result for T' = 0 are shown. In addition,
a disparity map supplied by ETL is shown for comparison. ® The stochastic
matching algorithm produces a result that is quite similar to the ETL data,
although it is somewhat smoother. To some extent, this difference can be ex-
plained by the fact that the ETL result was produced from higher-resolution
stereo images. The errors on the right border of Figure 3e are due to the fact
that the stereo images do not have 100% overlap.

The final example, shown in Figure 4, is an oblique view of an outdoor scene
containing a number of trees in both the foreground and background. The re-
sult in Figure 4e is certainly plausible, although we do not have a quantitative

3The ETL disparity map was made with an interactive digital correlation device that
depends on a human operator to detect and correct errors. The disparity map in Figure 3f
has been sampled from a larger map compiled from much higher-resolution imagery.



disparity model to compare it with, as in the previous examples. The matching
algorithm seems to have smoothed over the foreground trees more than neces-
sary, although we must be careful when relying on our subjective impressions of
depth. When we interpret a scene like this one, we do not use stereo exclusively.

5 Conclusions

Stochastic stereo matching provides an attractive alternative to conventional
stereo-matching techniques in several respects. The algorithm is simple, and,
with suitable parallel hardware, can be very fast. Unlike conventional ap-
proaches, it produces a dense disparity map.

As noted by Geman and Geman |9], .stochastic optimization by simulated
annealing is in some ways similar to relaxation labeling [10]. In both approaches,
obhjects are classified in such a way as to be consistent with a global context
and to satisfy local constraints. There are, however, important differences.
Relaxation labeling is a nonstochastic approach that is not based on any well-
defined physical analogy. It has no counterparts for three important concepts
in simulated annealing: energy, temperature, and thermal equilibrium. One
criticism that has been made of relaxation labeling is that one usually has
no clear notion of exactly what is being optimized. In simulated annealing,
however, one must specify this optimization, namely, the energy function.

The concept of temperature in simulated annealing provides a way to handle
different scales in the problem instance. At higher temperatures, objects are
only weakly coupled, and long-range interactions among large collections of
objects can dominate the behavior of the system. At lower temperatures, local
interactions take over. This effect was clearly seen in the examples of Section 4.
Some physical systems exhibit a phase transition at some critical temperature.
When simulating such systems, one must be careful to lower the temperature
very slowly in the vicinity of the critical temperature. We have not observed
phase transitions in the stereo problem and have been able to use fixed annealing
schedules.

We are considering two extensions of the simple model presented here. First,
the effective range of disparity could be increased by using lattices of several
scales, allowing the coarser ones to bias the finer, in a manner similar to the
hierarchical control structures used in many other matching techniques. Second,
following Geman and Geman [9], 2 “line process” could be used to model depth
discontinuities; although, in addition to lines, the process would also model
occluded areas.



Figure 2: A 10% Random Dot Stereogram.



(e T=0 (f) ETL disparity map

Figure 3: A Vertical Aerial Stereogram.
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